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Abstract— In this paper we present the Cataclysm server
platform for handling extreme overloads in hosted Internet
applications. The primary contribution of our work is to
develop a comprehensive overload control approach that
brings together admission control, dynamic provisioning of
platform resources, and adaptive degradation of QoS. Cat-
aclysm provides several desirable features under overloads,
such as preferential admission of important requests, the
ability to handle diverse workloads, and revenue maximiza-
tion at multiple time-scales via dynamic provisioning and
size-based admission control. Cataclysm can transparently
tradeoff the accuracy of its decision making with the inten-
sity of the workload allowing it to handle incoming rates of
several tens of thousands of requests/second. We implement
a prototype Cataclysm hosting platform on a Linux cluster
and demonstrate the benefits of our integrated approach
using a variety of workloads.

Categories—System Design, Experimentation with real
Testbed.

I. INTRODUCTION

During the past decade, there has been a dramatic in-
crease in the popularity of Internet applications such as
online news, online auctions and electronic commerce. It
is well known that the workload seen by Internet applica-
tions varies over multiple time-scales and often in an un-
predictable fashion [22]. Certain workload variations such
as time-of-day effects are easy to predict and handle by
appropriate capacity provisioning [10]. Other variations
such as flash crowds are often unpredictable. On Septem-
ber 11th 2001, for instance, the workload on a popular
news web site increased by an order of magnitude in thirty
minutes, with the workload doubling every seven minutes
in that period [22]. Similarly, the load on e-commerce re-
tail web sites can increase dramatically during the final
days of the popular holiday season.

In this paper, we focus on handling extreme overloads
seen by Internet applications. Informally, an extreme over-
load is a scenario where the workload unexpectedly in-
creases by up to an order of magnitude in a few tens of

minutes. Our goals are (i) to design a system that remains
operational even in the presence of an extreme overload
and even when the incoming request rate is several times
greater than system capacity, and (ii) to maximize the util-
ity due to the requests serviced by the application during
such an overload. We assume that Internet applications
or services run on a hosting platform—essentially a server
cluster that rents its resources to applications. Application
providers pay for server resources, and in turn, are pro-
vided performance guarantees, expressed in the form of
a service level agreement (SLA). A hosting platform can
take one or more of three actions during an overload: (i)
add capacity to the application by allocating idle or under-
used servers, (ii) turn away excess requests and preferen-
tially service only “important” requests, and (iii) degrade
the performance of admitted requests in order to service a
larger number of aggregate requests.

In this paper, we argue that a comprehensive approach
for handling extreme overloads should involve a synergis-
tic combination of all of the above techniques. A hosting
platform should, whenever possible, allocate additional
capacity to an application in order to handle increased de-
mands. The platform should degrade performance in or-
der to temporarily increase effective capacity during over-
loads. When no capacity addition is possible or when the
SLA does not permit any further performance degradation,
the platform should turn away excess requests. While do-
ing so, the platform should preferentially admit important
requests and turn away less important requests to maxi-
mize overall utility. For instance, small requests may be
preferred over large requests, or financial transactions may
be preferred over casual browsing requests.

We present the design of the Cataclysm server platform
to achieve these goals. Cataclysm is specifically designed
to handle extreme overloads in Internet applications and
differs from past work in several significant respects.

First, since an extreme overload may involve request
rates that are an order of magnitude greater than the cur-
rently allocated capacity, the admission controller must be
able to quickly examine requests and discard a large frac-



tion of these requests, when necessary, with minimal over-
heads. Thus, the efficiency of the admission controller is
important during heavy overloads. To address this issue,
we propose very low overhead admission control mech-
anisms that can scale to very high request rates under
overloads. Past work on admission control [5], [8], [24],
[27] has focused on the mechanics of policing and did not
specifically consider the scalability of these mechanisms.
In addition to imposing very low overheads, our mecha-
nisms can preferentially admit important requests during
overload and transparently tradeoff accuracy of their de-
cision making with the intensity of the workload. The
tradeoff between accuracy and efficiency is another con-
tribution of our work and enables our implementation to
scale to incoming rates of up to a few tens of thousands of
requests/s.

Second, our dynamic provisioning mechanism employs
a G/G/1-based queuing model of a replicable application
in conjunction with online measurements to dynamically
vary the number of servers allocated to each application.
A novel feature of our platform is its ability to not only
vary the number of servers allocated to an application but
also other components such as the admission controller
and the load balancing switches. Dynamic provisioning
of the latter components has not been considered in prior
work.

Last, our work demonstrates that dynamic provisioning
and admission control can be coupled in useful ways to
enhance the ability of the platform in handling extreme
overloads. For instance, the admission controller can pro-
actively invoke dynamic provisioning when the request
drop rates exceeds a certain threshold, and the provision-
ing mechanisms can provide useful information to the ad-
mission controller for policing requests. Past work on ad-
mission control [5], [8], [24], [27] and dynamic provision-
ing [3], [21] considered each technique in isolation and
did not study the impact of such couplings.

We have implemented a prototype Cataclysm hosting
platform on a cluster of twenty Linux servers. We demon-
strate the effectiveness of our integrated overload control
approach via an experimental evaluation. Our results show
that (i) preferentially admitting requests based on impor-
tance and size can increase the utility and effective capac-
ity of an application, (ii) our provisioning is both agile and
effective at diverting platform resources to where they are
needed most, thus improving platform revenue.

The rest of this paper is organized as follows. Section 1l
provides an overview of the proposed system. Sections 11
and 1V describe the mechanisms that constitute our over-
load management solution. Section V describes the im-
plementation of our prototype. In Section VI we present
the results of our experimental evaluation. Section VII
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presents related work and Section V111 concludes this pa-
per.

Il. SYSTEM OVERVIEW

In this section, we present the system model for our Cat-
aclysm hosting platform and the model assumed for Inter-
net applications running on the platform.

A. Cataclysm Hosting Platform

The Cataclysm hosting platform consists of a cluster
of commodity servers interconnected by a modern LAN
technology such as gigabit Ethernet. One or more high
bandwidth links connect this cluster to the Internet. Each
node in the hosting platform can take on one of three roles:
cataclysm server, cataclysm sentry, or cataclysm control
plane (see Figure 1).

Cataclysm Servers: Cataclysm servers are nodes that
run Internet applications. The hosting platform may host
multiple applications concurrently. Each application is as-
sumed to run on a subset of the nodes, and a node is as-
sumed to run no more than one application at any given
time. A subset of the servers may be unassigned and form
the free server pool. The number of servers assigned to an
application can change over time depending on its work-
load. Each server also runs the cataclysm nucleus—a soft-
ware component that performs online measurements of
application-specific resource usages, which are then con-
veyed to the other two components that we describe next.

Cataclysm Sentry: Each application running on the
platform is assigned one or more sentries. A sentry guards
the servers assigned to an application and is responsible
for two tasks. First, the sentry polices all requests to an ap-
plication’s server pool—incoming requests are subjected
to admission control at the sentry to ensure that the con-
tracted performance guarantees are met; excess requests
are turned away during overloads. Second, each sentry
implements a layer-7 switch that performs load balancing



across servers allocated to an application. Since there has
been substantial research on load balancing techniques for
clustered Internet applications [19], we do not consider
load balancing techniques in this work.

Cataclysm Control Plane: The control plane is respon-
sible for dynamic provisioning of servers and sentries in
individual applications. It tracks the resource usages on
nodes, as reported by Cataclysm nuclei, and determines
the resources (in terms of the number of servers and sen-
tries) to be allocated to each application.

B. Model for Internet Applications

The Internet applications considered in this work are
assumed to be inherently replicable. That is, the appli-
cation is assumed to run on a cluster of servers, and it
is assumed that running the application on a larger num-
ber of servers results in an effective increase in capacity.
Many, but by no means all, Internet applications fall into
this category. Vanilla clustered web servers are an exam-
ple of a replicable application. Multi-tiered Internet appli-
cations are partially replicable. A typical multi-tiered ap-
plication has three components: a front-end HTTP server,
a middle-tier application server, and a back-end database
server. The front-end HTTP server is easily replicable but
is not necessarily the bottleneck. The middle-tier—a fre-
guent bottleneck— can be implemented in different ways.
One popular technique is to use server-side scripting such
as Apache’s php functionality, or to use cgi-bin scripting
languages such as perl.1f the scripts are written carefully to
handle concurrency, it is possible to replicate the middle-
tier as well. More complex applications use Java applica-
tion servers to implement the middle-tier. Dynamic repli-
cation of Java application servers is more complex and
techniques for doing so are beyond the scope of this paper.
Dynamic replication of back-end databases is an open re-
search problem. Consequently, most dynamic replication
techniques in the literature, including this work, assume
that the database is sufficiently well provisioned and does
not become a bottleneck even during overloads.

Given a replicable Internet application, we assume that
the application specifies the desired performance guaran-
tees in the form of a service level agreement (SLA). An
SLA provides a description of the QoS guarantees that the
platform will provide to the application. The SLA we con-
sider in our work is defined as follows:

Ry if ariva rate € [0, A1)
Avg resp time R of adm req = Ro if arrival rate € [A1, \2)
Ry if arrival rate € [Ag—1,0)

(1)

Arrival rate Avg. resp. time
for admitted requests |
< 1000 1sec
1000-10000 2 sec
> 10000 3 sec

TABLE |
A SAMPLE SERVICE-LEVEL AGREEMENT.

The SLA specifies the revenue that is generated by each
request that meets its response time target. Table I illus-
trates an example SLA. Additionally, the SLA may also
specify a lower bound on the number of servers that an
application should be assigned.

Each Internet application consists of L(L > 1) request
classes: C4,...,Cr. The class of a request determines
its importance— requests of class C; are treated as most
important and those of Cy, as the least important. The
number of request classes L and the function that maps
requests to classes is application-dependent. To illustrate,
an online brokerage web site may define three classes and
may map financial transactions to 'y, other types of re-
quests such as balance inquiries to Cs, and casual brows-
ing requests from non-customers to C's.

I1l. CATACLYSM SENTRY DESIGN

In this section, we describe the design of a Cataclysm
sentry whose primary goal is to maximize the application’s
revenue. The sentry is responsible for two tasks—request
policing and load balancing. As indicated earlier, the load
balancing technique used in the sentry is not a focus of
this work, and we assume the sentry employs a layer-7
load balancing algorithm such as [19]. The first key is-
sue that drives the design of the request policer is that of
providing class-based differentiation to the application: a
request should not be denied service due to capacity as-
signed to a request of a less important class. Given our
focus on extreme overloads, the design of the policer is
also influenced by the second key issue of scalability—
ensuring very low overhead admission control tests in or-
der to scale to very high request arrival rates seen during
overloads. This section elaborates on these two issues.

From a theoretical point of view, the problem of con-
ducting admission control to maximize the number of ad-
mitted requests while providing class-based differentiation
can be shown to be NP-hard. Due to lack of space we omit
the proof here and present it in [23]. With these insights
into the properties of the admission control problem, we
focus on designing a policer that provides the desired dif-
ferentiation with high probability.



A. Request Policing Basics

The sentry maps each incoming request to one of the
classes C1, ..., C,. Each class has a queue associated with
it; incoming requests are appended to the corresponding
class-specific queue (see Figure 2). Requests within each
class can be processed either in FIFO order or in order of
their service times. In the former case, all requests withina
class are assumed to be equally important, whereas in the
latter case smaller requests are given priority over larger
requests within each class. Admitted requests are handed
to the load balancer, which then forwards them to one of
the Cataclysm servers in the application’s server pool.

The policer incorporates the following two features to
achieve class-based differentiation.

(1) The policer introduces different amounts of delay in
the processing of newly arrived requests belonging
to different classes. Specifically, requests of class C;
are processed by the policer once every d; time units
(di =0 < ds < ... <dyp);requests arriving during
successive processing instants wait for their turn in
their class-specific queues. These delay values, deter-
mined periodically, are chosen to reduce the chance
of admitting less important requests into the system
when they are likely to deny service to more impor-
tant requests that arrive shortly thereafter. In Section
I11-E we show how to pick these delay values such
that the probability of a less important request be-
ing admitted into the system and denying service to
a more important request that arrives later remains
sufficiently small.

The policer processes queued requests in the decreas-
ing order of importance—requests in C'; are sub-
jected to the admission control test first, and then
those in C5 and so on. Doing so ensures that requests
in class C; are given higher priority than those in
class C;, j > 4. The admission control test—which
is described in detail in the next section—admits re-
quests so long as the system has sufficient capacity
to meet the contracted SLA. Note that, if requests in
a certain class C; fail the admission control test, all
queued requests in less important classes can be re-
jected without any further tests.

Observe that the above admission control strategy meets
one of our two goals—it preferentially admits only impor-
tant requests during an overload and turns away less im-
portant requests. However, the strategy needs to invoke
the admission control test on each individual request, re-
sulting in a complexity of O(r), where r is the number of
queued up requests. Further, when requests within a class
are examined in order of service times instead of FIFO,
the complexity increases to O(r - log(r)) due to the need
to sort requests. Since the incoming request rate can be

)

substantially higher than capacity during an extreme over-
load, running the admission control test on every request
or sorting requests prior to admission control may be sim-
ply infeasible. Consequently, in what follows, we present
two strategies for very low overhead admission control
that scale well during overloads.

We note that a newly arriving request imposes two
types of computational overheads on the policer—(i) pro-
tocol processing and (ii) the admission control test itself.
Clearly, both these components need to scale for effec-
tive handling of overloads. When protocol processing
starts becoming bottleneck, we respond by increasing the
number of sentries guarding the overloaded application—
a technique that we describe in detail in Section IV-C. In
this section we present techniques to deal with the scala-
bility of the admission control test.

B. Efficient Batch Processing

One possible approach for reducing the policing over-
head is to process requests in batches. Request arrivals
tend to be very bursty during severe overloads, with a
large number of requests arriving in a short duration of
time. These requests are queued up in the appropriate
class-specific queues at the sentry. Our technique exploits
this feature by conducting a single admission control test
on an entire batch of requests within a class, instead of do-
ing so for each individual request. Such batch processing
can amortize the admission control overhead over a larger
number of requests, especially during overloads.

To perform efficient batch-based admission control, we
define b buckets within each request class. Each bucket
has a range of request service times associated with it.
The sentry estimates the service time of a request and
then hashes it into the bucket corresponding to that ser-
vice time. To illustrate, a request with an estimated ser-
vice time in the range (0, s1] is hashed to bucket 1, that
with service time in the range (s1, s2] to bucket 2, and so
on. By defining an appropriate hashing function, hashing
a request to a bucket can be implemented efficiently as a
constant time operation.

Bucket-based hashing is motivated by two reasons.
First, it groups request with similar service times and en-
ables the policer to conduct a single admission control
test by assuming that all requests in a bucket impose sim-
ilar service demands. Second, since successive buckets
contain requests with progressively larger service times,
the technique implicitly gives priority to smaller requests.
Moreover, no sorting of requests is necessary—the hash-
ing implicitly “sorts” requests when mapping them into
buckets.

When the admission control is invoked on a request
class, it considers each non-empty bucket in that class and
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Fig. 2. Class-based differentiation in the Cataclysm sentry.

conducts a single admission control test on all requests in
that bucket. (i.e., all requests in a bucket are treated as a
batch). Consequently, no more than b admission control
tests are needed within each class, one for each bucket.
Since there are L request classes, this reduces the admis-
sion control overhead to O(b - L), which is substantially
smaller than the O(r) overhead for admitting individual
requests.

Having provided the intuition behind batch-based ad-
mission control, we discuss the hashing process and the
admission control test in detail. In order to hash a request
into a bucket, the sentry must first estimate the inherent
service time of that request. The inherent service time of
a request is the time needed to service the request on a
lightly loaded server (i.e., when the request does not see
any queuing delays). The inherent service time of a re-
quest R is defined to be

()

where R, is the total CPU time needed to service R,
Raata 18 the 10 time of the request (which includes the
time to fetch data from disk, the time the request is blocked
on a database query, the network transfer time, etc.), and
« is an empirically determined constant. The inherent ser-
vice time is then used to hash the request into an appro-
priate bucket—the request maps to a bucket i such that
5i < Sinherent < Si+1-

The specific admission control test for each batch of re-
quests within a bucket is as follows. Let 3 denote the batch
size (i.e., the number of requests) in a bucket. Let Q de-
note the estimated queuing delay seen by each request in
the batch. The queuing delay is the time the request has
to wait at a Cataclysm server before it receives service;
the queuing delay is a function of the current load on the
server and its estimation is discussed in Section I11-D. Let
7 denote the average number of requests (connections) that
are currently being serviced by a server in the application’s
server pool. Then the 3 requests within a batch are admit-
ted if and only if the sum of the queuing delay seen by
a request and its actual service time does not exceed the

Sinherent = chu +a- Rdata

contracted SLA. That is,

o (n+[2])-5< e

3)
where S is the average inherent service time of the re-
quests in a batch, n is the number of servers allocated to
the application, and R, is the desired response time. The
term (n + {%1) - S is an estimate of the actual service
time of the last request in the batch, and is determined by
scaling the inherent service time S by the server load—
which is the number of the requests currently in service,
i.e., m, plus the number of requests from the batch that
might be assigned to the server i.e, [%1. Rather than ac-
tually computing the mean inherent service time of the re-
quest in a batch, it is approximated as S = (s; + si+1)/2,
where (s;, si+1] is the service time rage associated with
the bucket.

As indicated above, the admission control is invoked
for each class periodically—once every d; time units for
newly arrived requests of class C;. The invocation is more
frequent for important classes and less frequent for less
important classes, that is, dy = 0 < do < ... < dj.
Since a request may wait in a bucket for up to d; time
units before admission control is invoked for its batch, the
above test is modified as

Q"‘(U""Vg-‘)‘SSRsla_di

4)
In the event this condition is satisfied, all requests in the
batch are admitted into the system. Otherwise requests in
the batch are dropped.

C. Scalable Threshold-based Policing

We now present a second approach to further reduce
the policing overhead. Our technique trades efficiency of
the policer for accuracy and reduces the overhead to a few
arithmetic operations per request. The key idea behind
this technique is to periodically pre-compute the fraction
of arriving requests that should be admitted in each class
and then simply enforce these limits without conducting
any additional per-request tests. Our technique uses esti-
mates of future arrival rates and service demands in each
class to compute a threshold, which is defined to be the
pair (class ¢, fraction p,qmic). The threshold indicates that
all requests in classes more important than i should be ad-
mitted (pqamic = 1), requests in class 7 should be admit-
ted with probability p.qms¢, and all requests in classes less
important than 7 should be dropped (pagmit = 0). We
determine these parameters based on observations of ar-
rival rates and service times in each classes over periods
of moderate length (we use periods of length 15sec). De-
noting the arrival rates to classes 1,...,L by Aq,..., AL



and the observed average service times by s1, ..
threshold (7, paamic) IS computed such that

.y SL, the

j=i—1

> Ajrsi<1(5)

j=i
> N85 > 1and paamat - Ai - si +
j=1 Jj=1

Thus, admission control now merely involves applying
the inexpensive classification function on a new request to
determine its class and then using the equally lightweight
thresholding function to decide if it should be admitted.

The threshold-based and the batch-based policing
strategies need not be mutually exclusive. The sentry can
employ the more accurate batch-based policing so long as
the incoming request rate permits one admission control
test per batch. If the incoming rate increases significantly,
the processing demands of the batch-based policing may
saturate the sentry. In such an event, when the load at the
sentry exceeds a threshold, the sentry can trade accuracy
for efficiency by dynamically switching to a threshold-
based policing strategy.

D. Online Parameter Estimation

The batch-based and threshold-based policing algo-
rithms require estimates of a number of system parame-
ters:

Arrival rate \; in each request class.

o Queuing delay @ incurred by a request.

« Number of requests in service 7.

» Request service time s.

o The constant « in Equation 2.

These parameters are estimated using online measure-
ments. The nuclei running on the cataclysm servers and
sentries collectively gather and maintain various statistics
needed by the policer. Due to lack of space, we present
the details of how these are measured and how inherent
service times of incoming requests are estimated in [23].

E. Analysis of the Policer

In this section we show how the sentry can, under cer-
tain assumptions, compute the delay values for various
classes based on online observations. The goal is to pick
delay values such that the probability of a newly arrived
request being denied service due to an already admitted
less important request is smaller than a desired threshold.

Consider the following simplified version of the admis-
sion control algorithm presented in Section I111-B: Assume
that the application runs on only one server—it is easy to
extend the analysis to the case of multiple servers. The
admission controller lets in a new request if and only if
the total number of requests that have been admitted and
are being processed by the application does not exceed a

threshold V. Assume the application consists of L request
classes C1,...,Ct in decreasing order of importance.
We make the simplifying assumption of Poisson arrivals
with rates A1,..., Az, and exponentially distributed ser-
vice times with means s1, . .., s, respectively. As before,
d1 = 0. For simplicity of exposition we assume that the
delay for class Cyisd, and Vi > 2,d; 11 = k;-d;, (ki > 1).
Denote by A; the event that a request of class C; has to be
dropped at the processing instant m-d;, (m > 0) and there
is at least one request of a less important class C;, (j > 1)
still in service. Clearly,

Pr(A;)=0and Pr(AL) = 0.
We are interested in ensuring

Vi>1,Pr(A;) <e0<e<l. (6)

Consider 1 < ¢ < L. For A; to occur, all of the following
must hold: (1) X;: at least one request of class C; arrives
during the period [(m — 1) - d;, m - d;], (2) Y;: the number
of requests in service at time m - d; is N, (3) Z;: at least
one of the requests being serviced belongs to one of the
classes C;11, ..., Cr. We have,

PT(AZ> = PT‘(XZ ANY; A ZZ)

During overloads, we can assume that the number of
requests in service would be N with a high probability
Pdrop- The policer will record pg,..,, over short periods of
time. Also, X; and Z; are independent. This lets us have

(")
(8)

Denote by Zf, (1 < j < L) the event that at least one of
the requests being serviced at time m - d; belongs to the
class j. Clearly,

PY’(Al) ~ PT(Xz) * Ddrop * Pr(Zl)

Pr(X;) =1—e idi

j=L 4
Pr(Z;) = Z Pr(Z))
j=i+1

9)

Let us now focus on the term Pr(Z7). The event Z/ is
the disjunction of the following events, one for each , (I >
0): P}: at least one request of class j arrives during the
period [m - d; — (I+1) - dj,m-d; — - d;] and Q}: at least
one request of class j is admitted at the processing instant
m - d; — 1 - d; and RL: the service time of at least one
admitted request is long enough so that it is still in service
at time m - d;. As in Equation (8),

Pr(PH)=1—eNdi

; (10)

Consider Ré-. During an overload each admitted request
competes at the server with (/V-1) other requests during



most of its lifetime. A fair approximation then is to as-
sume that a request takes [V times its service time to finish.
Therefore, we have,

(11)

We approximate @, using the following reasoning.
During overloads, a request of class C; will be admitted
at processing instant ¢ only if the number of requests in
service at time ¢ is less than IV (the probability of this is
approximated as (1 — parop)) and no request of a more
important class C}, arrived during [t — dp,, t]. That is,

h=j—1

Pr(Q;) = (1= parop) - [ e
h=1

(12)

Combining Equations (7)-(12), we get the following
approximation. Pr(A4;),

PT(Az) ~ DPdrop - (1 - pdrop).' (1 - G_Ai'di)'

—X:-d; h=j—1 _,.
EJ:L+1 (176 ’ J).th‘i € Ah dh
J=1

d;
esi N 1

The above approximation of Pr(A;) provides a proce-
dure for iteratively computing the d; values using numeri-
cal methods. We pick delay values that make the term on
the right hand side smaller than the desired bound e for all
. This in turn guarantees that the inequalities in (6) are
satisfied.

IV. PROVISIONING FOR CATACLYSMS

Policing mechanisms may turn away a significant frac-
tion of the requests during overloads. In such a scenario,
an increase in the effective application capacity is neces-
sary to reduce the request drop rate. The Cataclysm con-
trol plane implements dynamic provisioning to vary the
number of allocated servers based on application work-
loads. The application’s server pool is increased during
overloads by allocating servers from the free pool or by
reassigning under-used servers from other applications.
The control plane can also dynamically provision sentry
servers when the incoming request rates imposes signifi-
cant processing demands on the existing sentries. The rest
of this section discusses techniques for dynamically pro-
visioning Cataclysm servers and sentries.

A. Queuing-theoretic Model for Replicable Applications

We use queuing theory to model the revenue obtained
from assigning a certain number of servers to a replica-
ble application under a given workload. Our model does
not make any assumptions about the nature of the request

arrival processes or the service times. Our abstraction of
a single replica of a service is a G/G/1 queuing system.
The following bound is known for a G/G/1 queuing sys-
tem [13]:

02 + ag !
2 (E[R] - E[S])

A> |E[S] + (13)

Here E[R] is the average response time, E[S] is the aver-
age service time, X is the request arrival rate, p = A - E'[S]
is the utilization, and o2 and o7 are the variance of inter-
arrival time and the variance of service time respectively.
It should be pointed out that a number of similar models
for simple, replicable applications have been proposed in
recent work ([7], [11], [21], [25]) and any of these could
potentially be used by our provisioning algorithm. The
comparison of our model with these other models is not
relevant to our current discussion of overload management
and therefore beyond the scope of this work. Modeling of
more complex, multi-tiered Internet applications is part of
our ongoing research.

Inequality (13) gives a lower bound on the request ar-
rival rate for which one application replica will be able to
provide an average response time of E[R]. We denote this
by Xin henceforth. Let C'(a,n) denote the revenue ob-
tained from allocating n servers to application a. Recall
from the SLA defined in Section Il that to determine this,
we need to predict the overall arrival rate to the service
during the next provisioning cycle (simply cycle hence-
forth). Having predicted this rate A4, the response time
target E[R] is read from the entry in the SLA correspond-
ing to an arrival rate of \,,..4. Thus we have

Cla,n) =n-Aip -7 Tprow (14)

Here, r is the revenue per admitted request that meets its
response time target and 75,,.,, is length of a cycle. Due to
the lower bound k,,,;,, on the number of servers assigned
to a, we only need to compute C'(a,n) for the following

values of n:
Apred }
Ain

N is the total number of cataclysm servers in the cluster.
These revenue curves are then used to determine a parti-
tioning of the servers among applications that maximizes
the expected revenue over the next cycle. This is achieved
by solving the following revenue maximization problem

Maximize: >, C(a,ng)
Subjectto: >, ng < N

For the replicable applications that we consider in our
work (see Section 11-B), the revenue curves are linear. A

kminSRSHEH{NypZ (15)



simple greedy heuristic can be used to solve this problem
optimally. This heuristic begins by assigning to each ap-
plication a number of servers equal to the lower bound
guaranteed in its SLA. It then proceeds in steps, each re-
sulting in one additional server being assigned to some
application. In each step the heuristic determines the ap-
plication that would experience the most gain in revenue
due to an additional server and that has not yet reached its
upper bound on the number of servers. This process con-
tinues till (1) all the servers have been assigned or (2) all
applications have reached their upper bounds or (3) no ap-
plication would experience a positive gain in revenue due
to an additional server.

B. Predictive and Reactive Provisioning

The dynamic provisioning mechanism normally oper-
ates in a predictive fashion. It is invoked periodically
(once every 30 minutes in our prototype) and uses the
workload observations in the previous time period to re-
allocate servers to applications if necessary. Since over-
loads are often unanticipated, a sentry of an overloaded ap-
plication can dynamically invoke the provisioning mecha-
nism whenever the request drop rate exceeds a certain pre-
defined value. In such a scenario, the provisioning mech-
anism operates in a reactive mode to counter the overload.
The mechanism uses recent workload measurements for
the overloaded application to recompute its revenue curve
(unlike the predictive mode where all revenue curves are
recomputed, only the curve for the overloaded application
is recomputed in the reactive mode). The provisioning
mechanism then allocates additional servers to the over-
loaded application. Undesirable oscillations in such al-
locations are prevented using two constraints: (i) a limit
of A is imposed on the number of servers that can be al-
located to an application in a single step in the reactive
mode and (ii) a delay of ¢ time units is imposed on the
duration between two successive invocations of the pro-
visioning mechanism in the reactive mode (¢ is set to 5
minutes in our prototype). Recall that our SLA permits de-
graded response time targets for higher arrival rates. The
provisioning mechanism may degrade the response time
to the extent permitted by the SLA, add more capacity, or
a bit of both. The optimization drives these decisions, and
the resulting target response times are conveyed to the re-
quest policers. Thus, these interactions enable coupling of
policing, provisioning, and adaptive performance degra-
dation. We experimentally demonstrate this coupling in
Section V1.

C. Sentry Provisioning

In general, allocation and deallocation of sentries is sig-
nificantly less frequent than that of Cataclysm servers.

Further, the number of sentries needed by an application is
much smaller than the number of servers running it. Con-
sequently, a simple provisioning scheme suffices for dy-
namically varying the number of sentries assigned to an
application. Our scheme uses the CPU utilization of the
existing sentry servers as the basis for allocating additional
sentries (or deallocating active sentries). If the utiliza-
tion of a sentry stays in excess of a pre-defined threshold
high.p, for a certain period of time, it requests the control
plane for an additional sentry server. Upon receiving such
requests from one or more sentries of an application, the
control plane assigns each an additional sentry. Similarly,
if the utilization of a sentry stays below a threshold low .,
it is returned to the free pool while ensuring that the appli-
cation has at least one sentry remaining. Whenever the
control plane assigns (or removes) a sentry server to an
application, it repartitions the application’s servers pool
equally among the various sentries. The DNS entry for the
application is also updated upon each allocation or deallo-
cation; a round-robin DNS scheme is used to loosely parti-
tion incoming requests among sentries. Since each sentry
manages a mutually exclusive pool of servers, it can inde-
pendently perform admission control and load balancing
on arriving requests; the SLA is collectively maintained
by virtue of maintaining it at each sentry.

V. IMPLEMENTATION CONSIDERATIONS

We implemented a prototype Cataclysm hosting plat-
form on a cluster of 20 Pentium machines connected via
a 1Gbps ethernet switch and running Linux 2.4.20. Each
machine in the cluster runs one of the following entities:
(1) an application replica, (2) a cataclysm sentry, (3) the
cataclysm provisioning, (4) a workload generator for an
application. In this section we discuss our implementation
of the cataclysm sentry and provisioning.

Cataclysm Sentry: We used Kernel TCP Virtual Server
(kt cpvs) version 0.0.14 [15] to implement the policing
mechanisms described in Section I11. kt cpvs is an open-
source, Layer-7 load balancer implemented as a Linux
module. It accepts TCP connections from clients, opens
separate connections with servers (one for each client)
and transparently relays data between these. We modi-
fied kt cpvs to implement all the sentry mechanisms de-
scribed in Sections 11l and IV. The details of our imple-
mentation can be found in [23].

Cataclysm Provisioning: Cataclysm provisioning was
implemented as a user-space daemon running on a dedi-
cated machine. At startup, it reads information needed to
communicate with the sentries and information about the
servers in the cluster from a configuration file. It commu-
nicates with the sentries over TCP sockets. The sentries



gather and report various statistics needed by the provi-
sioning algorithm over these sockets. The provisioning al-
gorithm can be invoked in the reactive or predictive modes
as discussed in Section V. After determining a partition-
ing of the cluster’s servers among the hosted applications,
the provisioning daemon remotely logs on to the nodes
running the sentries to enforce the partitioning.

V1.

In this section we present the experimental setup fol-
lowed by the results of our experimental evaluation.

EXPERIMENTAL EVALUATION

A. Experimental Setup

The cataclysm sentries were run on dual-processor
1GHz machines with 1GB RAM. The Cataclysm con-
trol plane (responsible for provisioning) was run on a
dual-processor 450MHz machine with 1GB RAM. The
machines used as cataclysm servers had 2.8GHz proces-
sors and 512MB RAM. Finally, the workload genera-
tors were run on machines with processor speeds varying
from 450MHz to 1GHz and with RAM sizes in the range
128MB-512MB. All machines ran Linux 2.4.20. In our
experiments we constructed replicable applications using
the Apache 1.3.28 web server with PHP support enabled.
The file set serviced by these web servers comprised files
of size varying from 1kB to 256kB to represent the range
from small text files to large image files. In addition, the
web servers host PHP scripts with different computational
overheads. The dynamic component of our workload con-
sist of requests for these scripts. In all the experiments, the
SLA presented in Figure | was used for the applications.
Application requests are generated using htt perf, an
open-source web workload generator.

B. Class-based Differentiation

Our first experiment investigates the efficacy of the
mechanisms employed by the Cataclysm sentry to pro-
vide class-based differentiation to requests. The Cata-
clysm provisioning was kept turned off in this experiment.
We constructed a replicated web server consisting of three
Apache servers. This application supported three classes
of requests—Gold, Silver and Bronze in decreasing order
of significance. The class of a request could be uniquely
determined from its URL. The delay values for the three
classes were fixed at 0, 50 and 100 msec respectively.

The workload consisted of requests for a set of PHP
scripts. The capacity of each Apache server for this work-
load (i.e., the request arrival rate for which the 95" per-
centile response time of the requests was below the re-
sponse time target) was determined offline and was found
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to be nearly 60 requests/sec. Figure 3(a) shows the work-
load used in this experiment. Nearly all the requests ar-
riving till =130 sec were admitted by the sentry. Be-
tween t=130 sec and t=195 sec, the Bronze requests were
dropped almost exclusively. At t=195 sec the arrival rate
of Silver requests shot up and reached nearly 120 re-
quests/sec. The admission rate of Bronze requests dropped
to almost zero to admit as many Silver requests as possi-
ble. At t=210 sec, the arrival rate of Gold requests shot
up to 200 requests/sec. The sentry totally suppressed all
arriving Bronze and Silver requests now and let in only
Gold requests as long as the increased arrival rate of Gold
requests persisted. Figure 3(c) is an alternate representa-
tion of the system behavior in this experiment and depicts
the variation of the fraction of requests of the three classes
that were admitted. Figure 3(d) depicts the performance
of admitted requests. We find that the sentry is successful
in maintaining the response time below 1000 ms.

C. Scaling to Handle Extreme Overloads

We measured the CPU utilization at the sentry server for
different request arrival rates for both the batch-based and
the threshold-based admission control. Figure 4 shows our
observations of CPU utilization with 95% confidence in-
tervals. Since we were interested only in the overheads of
the admission control and not in the data copying over-
heads inherent in the design of the ktcpvs switch, we
forced the sentry to drop all requests after conducting the
admission control test. We increased the request arrival
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At t=135sec, the threshold was set to reject all Bronze requests; at
t=180sec, it was updated to reject all Bronze and Silver reguests; at
t=210sec it was updated to also reject Gold requests with a probability
0.5; fi nally, at t=390sec, it was again set to reject only Bronze requests.

rates till the CPU at the sentry server became saturated
(nearly 90% utilization). We observe more than a four-
fold improvement in the sentry’s scalability—whereas the
sentry CPU saturated at 4000 requests/sec with the batch-
based admission control, it was able to handle almost
19000 requests/sec with the threshold-based admission
control.

A second experiment was conducted to investigate the
degradation in the decision making due to the threshold-
based admission controller. We repeated the experiment
reported in Section VI-B (Figure 3) but forced the sentry
to employ the threshold-based admission controller. The
thresholds used by the admission control were computed
once every 15 sec. Figure 5(a) shows changes in the ad-
mission rates for requests of the three classes. The im-
pact of the inaccuracies inherent in the threshold-based ad-
mission controller resulted in degraded performance dur-
ing periods when the threshold chosen was incorrect. We
observe two such periods (120-135 sec during which all
Bronze requests were dropped and 190-210 sec during
which all Bronze and Silver requests were dropped while
Gold requests were admitted with probability of 0.5) dur-
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ing which the 95" percentile of the response time deteri-
orated compared to the target of 1000 msec. The response
times during the rest of the experiment were kept under
control due to the threshold getting updated to a strict
enough value.

Finally, we conducted an experiment to demonstrate the
ability of the system to dynamically provision additional
sentries to a heavily overloaded service. Figure 6 shows
the outcome of our experiment. The workload consisted
of requests for small static files sent to the sentry starting
at 4000 requests/sec and increasing by 4000 requests/sec
every minute and is shown in Figure 6(a). If the CPU uti-
lization of the sentry server remained above 80% for more
than 30 sec, a request was issued to the control plane for
an additional sentry. Figure 6(b) shows the variation of
the CPU utilization at the first sentry. At t=210 sec, a sec-
ond sentry was added to the service. Subsequent requests
were distributed equally between the two sentries causing
the arrival rate and the CPU utilization at the first sentry to
drop. A third sentry was added at t=420 sec, when the total
arrival rate to the service had reached 32000 requests/sec
overwhelming both the existing sentries.

D. Cataclysm Provisioning

We conducted an experiment with two web applications
hosted on our Cataclysm platform. The total number of
cataclysm servers available in this experiment was 11. The
SLAs for both the applications were identical and are de-
scribed in Figure I. Further, the SLAs imposed a lower
bound of 3 on the number of servers that each application
could be assigned. The default provisioning duration used
by the control plane was 30 min.

The workloads for the two applications consisted of re-
quests for an assortment of PHP scripts and files in the
size range 1kB-128kB. Requests were sent at a sustain-
able base rate to the two applications throughout the ex-
periment. Overloads were created by sending increased



number of requests for a small subset of the scripts and
static files (to simulate a subset of the content becoming
popular). The experiment began with the two applications
running on 3 servers each.Sentries invoked the provision-
ing algorithm when more than 50% of the requests were
dropped over a 5 min interval. Figures 7(a) and 7(c) de-
pict the arrival rates to the two applications. The arrival
rate for Application 1 was made to increase in a step-like
fashion starting from 100 requests/sec, doubling roughly
once every 5 min till it reached a peak value of 1600 re-
quests/sec. At this point Application 1 was heavily over-
loaded with the arrival rate several times higher than sys-
tem capacity (which was roughly 60 request/sec per server
assigned to the service as determined by offline measure-
ments). At t=910 sec the sentry, having observed more
than 50% of the request being dropped, triggered the pro-
visioning algorithm as described in Section V. The pro-
visioning algorithm responded by pulling one server from
the free pool and adding it to Application 1. Att=1210 sec,
another server was added to Application 1 from the free
pool. Observe in Figure 7(a) the increases in the admission
rates corresponding to these additional servers being made
available to Application 1. The next interesting event was
the default invocation of provisioning at t=1800 sec. The
provisioning algorithm added all the 3 servers remaining
in the free pool to the heavily overloaded Application 1.
Also, based on recent observation of arrival rates, it pre-
dicted an arrival rate in the range 1000-10000 requests/sec
and degraded the response time target for Application 1 to
2000 msec based on its QoS table (see Figure I). In the
latter part of the experiment, the overload of Application 1
subsided and Application 2 got overloaded. The function-
ing of the provisioning was qualitatively similar to when
Service 1 was overloaded. Figures 7(b) and 7(d) show the
95" percentile response times for the two services dur-
ing the experiment. The control plane was able to predict
changes to arrival rates and degrade the response time tar-
get according to the SLA resulting in an increased number
of requests being admitted. Moreover, the sentries were
able to keep the admission rates well below system capac-
ity to achieve response times within the appropriate target
with only sporadic violations (which were on fewer than
4% of the occasions).

VII.

Previous work on overload control in Internet platforms
spans several areas. We briefly review prior work that
is most relevant to the Cataclysm platform and refer the
reader to [23] for a more extensive survey.

Admission Control for Internet Services. \Woigt et
al. [26] present kernel-based admission control mech-
anisms to protect web servers against overloads—SYN
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policing controls the rate and burst at which new connec-
tions are accepted, prioritized listen queue reorders the
listen queue based on pre-defined connection priorities,
HTTP header-based control enables rate policing based on
URL names. Welsh and Culler [27] propose an overload
management solution for Internet services built using the
SEDA architecture. A salient feature of their solution is
feedback-based admission controllers embedded into indi-
vidual stages of the service. In [12], Kanodia and Knightly
utilize a modeling technique called service envelops to de-
vise an admission control for web services that attempts to
provide different response time targets for multiple classes
of requests. Li and Jamin [16] present a measurement-
based admission control to distribute bandwidth across
clients of unequal requirement. In [8], the authors present
an admission control for multi-tier e-commerce sites that
externally observes execution costs of requests, distin-
guishing different requests types. Kamra et al. present
a control theoretic approach for admission control in [11].
Dynamic Provisioning in Clusters. The notion of an
overflow server pool to handle unexpected surges in work-
load was proposed by Fox et al. [9]. Several efforts
have addressed the problem of provisioning resources at
the granularity of individual servers [21], [1]. Muse [3]
presents an architecture for resource management in a
hosting center. Muse employs an economic model for dy-
namic provisioning of resources to multiple applications.



Cluster-on-demand provides mechanisms for construct-
ing hierarchical virtual clusters in an on-demand fashion
[4]. Doyle et al. [7] present a model-based utility re-
source management focusing on coordinated management
of memory and storage. They develop an analytical model
for a web service with static content. Ranjan et al. [20]
make a case for multiple data centers hosting replicas
of an application. In case of one data center becoming
overloaded, requests may be diverted over a WAN to oth-
ers. Our focus in this work was on overload management
within a single data center.

In this work, we focus on the efficiency of the policing
mechanism—an important issue during overloads—as op-
posed to prior work that mostly focused on the mechanics
of the policing. Further, unlike prior work, our work has
considered the tradeoff between accuracy and efficiency
of policing to scale to large request rates, as well as tech-
nigues to provision sentries. Last, we showed the utility
of coupling policing and provisioning, in contrast to prior
approaches that considered these techniques in isolation.

VIII. CONCLUSIONS

In this paper we presented Cataclysm, a comprehen-
sive approach for handling extreme overloads in a host-
ing platform running multiple Internet services. The pri-
mary contribution of our work was to develop an over-
load management solution that brought together the tech-
niques of admission control, dynamic provisioning of the
platform’s resources and adaptive degradation of QoS into
one integrated system. Cataclysm provides several de-
sirable features under overloads, such as preferential ad-
mission of more important requests, the ability to han-
dle diverse workloads and revenue maximization at multi-
ple time-scales via dynamic provisioning of resources and
size-based admission control. The cataclysm sentry can
transparently tradeoff the accuracy of its decision making
with the intensity of the workload allowing it to handle
incoming rates of up to 19000 requests/second. We im-
plemented a prototype Cataclysm hosting platform on a
Linux cluster and demonstrated its benefits using a variety
of workloads.
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